Symmetry Breaking in Quantified Boolean Formulae

نویسندگان

  • Gilles Audemard
  • Saïd Jabbour
  • Lakhdar Sais
چکیده

Many reasoning task and combinatorial problems exhibit symmetries. Exploiting such symmetries has been proved to be very important in reducing search efforts. Breaking symmetries using additional constraints is currently one of the most used approaches. Extending such symmetry breaking techniques to quantified boolean formulae (QBF) is a very challenging task. In this paper, an approach to break symmetries in quantified boolean formulae is proposed. It makes an original use of universally quantified auxiliary variables to generate new symmetry breaking predicates and a new ordering of the QBF prefix is then computed leading to a new equivalent QBF formula with respect to validity. Experimental evaluation of the state-of-the-art QBF solver SEMPROP shows significant improvements (up to several orders of magnitude) on many QBFs instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Symmetry Breaking Predicates for Quantified Boolean Formulae

Many reasoning task and combinatorial problems exhibit symmetries. Exploiting such symmetries has been proved useful in reducing the search space. In this paper, a formal approach for symmetry breaking in quantified boolean formula is proposed. It make use of a new efficient technique for encoding the additional symmetry predicates in prenex clausal form. The new asymmetric formula is equivalen...

متن کامل

Symmetries of Quantified Boolean Formulas

While symmetries are well understood for Boolean formulas and successfully exploited in practical SAT solving, less is known about symmetries in quantified Boolean formulas (QBF). There are some works introducing adaptions of propositional symmetry breaking techniques, with a theory covering only very specific parts of QBF symmetries. We present a general framework that gives a concise characte...

متن کامل

Dealing with Symmetries in Quantified Boolean Formulas

Many reasoning task and combinatorial problems exhibit symmetries. Exploiting symmetries has been proved very important in reducing search efforts. This important task is widely investigated in constraint satisfaction problems and satisfiability of boolean formulas. In this paper, we show how symmetries can be naturally extended to Quantified Boolean Formulas (QBFs). A symmetries detection algo...

متن کامل

Boolean Propagation Based on Literals for Quantified Boolean Formulae

This paper proposes a new set of propagation rules for quantified Boolean formulae based on literals and generated automatically thanks to quantified Boolean formulae certificates. Different decompositions by introduction of existentially quantified variables are discussed in order to construct complete systems. This set of rules is compared with already proposed quantified Boolean propagation ...

متن کامل

Symmetry Breaking Predicates for SAT-based DFA Identification

It was shown before that the NP-hard problem of deterministic finite automata (DFA) identification can be effectively translated to Boolean satisfiability (SAT). Modern SAT-solvers can tackle hard DFA identification instances efficiently. We present a technique to reduce the problem search space by enforcing an enumeration of DFA states in depth-first search (DFS) or breadth-first search (BFS) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007